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Motivating example: ion channel openings



Modelling ion channels opening times

* Neurotransmitter is released across the synapse via the opening and closing
of calcium ion channels.

* Opening times can be measured.
* One scientific question has been:
Is there a single open state or multiple open states?
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Continuous-time Markov chains

« Times in different states have been
modelled using continuous-time
Markov chains.

+ Times in each state are
exponentially distributed.

* If only a single “open” state, a series
of measurements should resemble a
sample from an exponential
distribution.

» Each observed opening time X;
satisfies P(X; > x) = e~%.
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Multiple states give a mixture

* If there are two (different) open
states but the measuring device
cannot distinguish between them,
opening times form a mixture of two
exponential samples.

» Each observed opening time X;
satisfies
P(X; > x) = (1 — p)e~%X + pe=0x.
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Hard-to-detect local alternatives

» Choosing between one or two open states can be formulated as a
hypothesis-testing problem.
* There are two ways a “local alternative” can be hard to detect:
1. the two means are close to each other
2. the mixing proportion p is close to 0 (or 1)
* These two have quite different behaviour, case 2. being the “most
challenging”.
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X ~ Exponential scale mixture
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Gamma scale mixture detection



Hypothesis testing problem of interest

* We model data as iid random varibles X4, ..., X,.

Let F,(-) denote the gamma(«, 1) CDF (« is known).
* We are interested in the hypothesis testing problem

Ho: P(X1 < X) = Fa(x) vs. Hy: P(X7 < X) = (1= p)Fa(x) + pFa(6X),

forO<p<1andd#1.
This is the simplest possible “gamma scale mixture detection” model.
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Distinguishability

« For a given sequence (pp, 0n), write Gp(x) = (1 — pn)Fa(X) + pnFa(0nX).
* We address the question:
How close to F,(-) can the mixture G,(-) be and still be “detectable”?
That is, is there a test so that under G,(-) we have power — 17?

* We focus on the “sparse mixture” case where p, — 0.
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Previous work

» Deep general results for exponential families provided by Ditzhaus (2019)

covered the gamma scale mixture where 6 > 1;
« this is when the contaminating mean is smaller than the null.
* Arias-Castro and Huang (2020) covered the case 0 < 8 < 1 for o = %;

+ this is a x? scale mixture;
« applicable if we have a normal mixture variance with common known mean.
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The case 0 < 6 < 1 for general a.



Separation in n dimensions

* In one sense the problem is “easy”: if

* F and G} are the n-dimensional versions of Hy and Hy;
« if the total variation (TV, i.e. half L) distance

1 then NP test has limiting power 1;
dr(F2, G) = sup [F1{A} — Go{A}| nop
A 0 then NP test has no limiting power.

 The difficulty is in approximating TV distance in n dimensions.
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Hellinger distance trick

* The Hellinger distance whose square is
d%(F", Gp) —/(\/an \/dG’"' [1 —/\/ F”dG”]

— 0if and only if drv(FJ, G;) — O.

- Since [ \/dFNdG] = ([ /dF,dG,)" there is a nice relationship between
du(Fa, Gn) and dy(Fg, Gp):

n
(L6 =2 {1~ [1- jeb(FuGn)] |-
* Soif nd?(F,, Gp) — 0, dry(F7, G1) — 0 too.
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Critical rate r, under 4 scenarios

* In S. (2022) we showed that under each scenario for 6, that if p, = o(r,),

nd?(F,, Gp) — O:
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Bonferroni test attains r, in 3 scenarios

+ A test based on the sample mean or median can detect p, < r,, (i.e. attains
critical rate) in scenarios 1 and 2.
* A test based on the sample maximum attains the critical rate in scenario 4.

+ A Bonferroni test using the smallest p-value of these two attains the critical
rate in scenarios 1, 2 and 4;

* it does not attain the critical rate in scenario 3 (6, = %) though.
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Score test attains critical rate in scenario 3

» The score statistic for testing Hy: p=0vs. Hi: p > 0when 6 = % is known is
i 2,
» Note that under Ho, Var (3°_, 5/2) = ool
* Nonetheless, in Chen and S. (2024) we showed that under scenario 3,
S [ex,-/z _ 20‘] J N (0, Mo+ 1)71) if pn = 0,

i=1
— . 2°T(a + 1
n(log )° N (uT(a+1D)7")  ifpy~ Mn(l(gm)

and thus attains the critical rate.

* Thus a Bonferroni test based on the smallest of 3 p-values (this score test
plus sample mean and max) attains critical rate in all 4 scenarios.
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Current/future work
* Note that the power of log n in r, varies in a non-continuous way as 6 — %

¢ It turns out that in a scenario where 6, — % slowly enough then a different
critical rate is obtained:

[eY

- eg. ifo,= 1+A,, »L 3= 1/ maX(A"’Io;n)

* the Bonferronl test may not attain thls critical rate;

* indeed no adaptive test (i.e. without knowledge of A,) may be able to.
* A broader “asymptotic minimax” framework may be needed:

+ a “price for adaptivity” like the extra y/log log n factor seen in the analogous
normal location mixture problem (see Ingster (1997, 2001, 2002)), may apply;

+ the GLRT would then be optimal according to that, and thus not attain the
critical rates in our 4 scenarios.
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