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Motivating example: ion channel openings

Gamma scale mixture detection

The case 0 < θ < 1 for general α.
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Motivating example: ion channel openings



Modelling ion channels opening times

• Neurotransmitter is released across the synapse via the opening and closing

of calcium ion channels.

• Opening times can be measured.

• One scientific question has been:

Is there a single open state or multiple open states?
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Continuous-time Markov chains

• Times in different states have been

modelled using continuous-time

Markov chains.

• Times in each state are

exponentially distributed.

• If only a single “open” state, a series

of measurements should resemble a

sample from an exponential

distribution.

• Each observed opening time Xi

satisfies P(Xi > x) = e−θx.
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Multiple states give a mixture

• If there are two (different) open

states but the measuring device

cannot distinguish between them,

opening times form a mixture of two

exponential samples.

• Each observed opening time Xi

satisfies

P(Xi > x) = (1− p)e−θ0x + pe−θ1x.
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Hard-to-detect local alternatives

• Choosing between one or two open states can be formulated as a

hypothesis-testing problem.

• There are two ways a “local alternative” can be hard to detect:

1. the two means are close to each other

2. the mixing proportion p is close to 0 (or 1)

• These two have quite different behaviour, case 2. being the “most

challenging”.
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X ~ Exponential scale mixture
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X ~ Exponential scale mixture
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Gamma scale mixture detection



Hypothesis testing problem of interest

• We model data as iid random varibles X1, . . . ,Xn.

• Let Fα(·) denote the gamma(α, 1) CDF (α is known).

• We are interested in the hypothesis testing problem

H0 : P(X1 ≤ x) = Fα(x) vs. H1 : P(X1 ≤ x) = (1− p)Fα(x) + pFα(θx) ,

for 0 < p < 1 and θ 6= 1.

• This is the simplest possible “gamma scale mixture detection” model.
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Distinguishability

• For a given sequence (pn, θn), write Gn(x) = (1− pn)Fα(x) + pnFα(θnx).

• We address the question:

How close to Fα(·) can the mixture Gn(·) be and still be “detectable”?

That is, is there a test so that under Gn(·) we have power → 1?

• We focus on the “sparse mixture” case where pn → 0.
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Previous work

• Deep general results for exponential families provided by Ditzhaus (2019)

covered the gamma scale mixture where θ > 1;

• this is when the contaminating mean is smaller than the null.

• Arias-Castro and Huang (2020) covered the case 0 < θ < 1 for α = 1
2
;

• this is a χ2
1 scale mixture;

• applicable if we have a normal mixture variance with common known mean.
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The case 0 < θ < 1 for general α.



Separation in n dimensions

• In one sense the problem is “easy”: if

• Fn
α and Gn

n are the n-dimensional versions of H0 and H1;

• if the total variation (TV, i.e. half L1) distance

dTV(F
n
α,G

n
n) = sup

A

|Fn
α{A} −Gn

n{A}| →

{
1 then NP test has limiting power 1;

0 then NP test has no limiting power.

• The difficulty is in approximating TV distance in n dimensions.

The University of Sydney 10/16



Hellinger distance trick

• The Hellinger distance whose square is

d2H(F
n
α,G

n
n) =

∫ (√
dFn

α −
√
dGn

n

)2
= 2

[
1−

∫ √
dFn

αdG
n
n

]
→ 0 if and only if dTV(F

n
α,G

n
n) → 0.

• Since
∫ √

dFn
αdG

n
n =

(∫ √
dFαdGn

)n
there is a nice relationship between

dH(Fα,Gn) and dH(F
n
α,G

n
n):

d2H(F
n
α,G

n
n) = 2

{
1−

[
1− 1

2
d2H(Fα,Gn)

]n}
.

• So if nd2H(Fα,Gn) → 0, dTV(F
n
α,G

n
n) → 0 too.
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Critical rate rn under 4 scenarios

• In S. (2022) we showed that under each scenario for θn, that if pn = o(rn),

nd2H(Fα,Gn) → 0:

Scenario rn

1. θn = 1−∆n ↑ 1 n−1/2∆−1
n

2. θn ≡ θ ∈ (1
2
,1) fixed n−1/2

3. θn ≡ 1
2
fixed [n(log n)α]−1/2

4. θn ≡ θ ∈ (0, 1
2
) fixed [n(log n)α−1]θ−1
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Bonferroni test attains rn in 3 scenarios

• A test based on the sample mean or median can detect pn � rn (i.e. attains

critical rate) in scenarios 1 and 2.

• A test based on the sample maximum attains the critical rate in scenario 4.

• A Bonferroni test using the smallest p-value of these two attains the critical

rate in scenarios 1, 2 and 4;

• it does not attain the critical rate in scenario 3 (θn ≡ 1
2
) though.
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Score test attains critical rate in scenario 3

• The score statistic for testing H0 : p = 0 vs. H1 : p > 0 when θ ≡ 1
2
is known is∑n

i=1 e
Xi/2.

• Note that under H0, Var
(∑n

i=1 e
Xi/2

)
= ∞!

• Nonetheless, in Chen and S. (2024) we showed that under scenario 3,

∑n
i=1

[
eXi/2 − 2α

]√
n(log n)α

d→


N
(
0, Γ(α+ 1)−1

)
if pn ≡ 0,

N
(
µ, Γ(α+ 1)−1

)
if pn ∼ µ2αΓ(α+ 1)√

n(log n)α

and thus attains the critical rate.

• Thus a Bonferroni test based on the smallest of 3 p-values (this score test

plus sample mean and max) attains critical rate in all 4 scenarios.
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Current/future work

• Note that the power of log n in rn varies in a non-continuous way as θ → 1
2
.
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• It turns out that in a scenario where θn → 1
2
slowly enough then a different

critical rate is obtained:

• e.g. if θn =
1+∆n

2
↓ 1

2
, rn =

√
max

(
∆n,

1
log n

)α

n

• the Bonferroni test may not attain this critical rate;

• indeed no adaptive test (i.e. without knowledge of ∆n) may be able to.

• A broader “asymptotic minimax” framework may be needed:

• a “price for adaptivity” like the extra
√
log log n factor seen in the analogous

normal location mixture problem (see Ingster (1997, 2001, 2002)), may apply;

• the GLRT would then be optimal according to that, and thus not attain the

critical rates in our 4 scenarios.
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THANK YOU!
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